"The Tasmanian Naturalist"

New Series, Vol. I., No. I.

It is with the greatest pleasure that the Tasmanian Ficld Saturalints. Clab presents the first momber of the new series of its fournal. "The Tasmanabn Xaturalist" commenced publication soon after the inabsuration of the Cluh in 1904, and rath until 1911. when it gradually becathe orewhelmed with limancial prohlems. Its objects doring those i-ates were to provide a formm for the promulgation of the work of the (lub, and to assing in the advancement of the laowledge of Tasmanam matural seience.

Sime 1911 costs hate increased commonsoly, and the fespures of the Clab, in common with these of learned societies thromghom the world, have barely hed their own. However, with the asvistance of "xewn 1.td.." the Club is making a second corlearour to publish its Jomrat, and the Commitlee look to members for the degree of practical eo-oporation, and the (hab lows to the public of the State for the mecessars sompathetie interest to emble this Jommal to continne its existemes.

We, the present and future contributors to "The Tannamian Nathralis.". are lirmly of the opmion that a bowledge and appreciation of matural laws and the principles governing the forces that control the world aromel us are essental to hman happiness and ecomomic progress. and esen the the rey existence of life itself.

We are convincer that the weltare and progress of the combmonity are based on deeper principles than economic lats. We know that man canoot
 must lit hanself into the fenerai seleme. For do this he mens know matme know what we are and kton the forces that govern life on the gholes. Therefore these fages will find mon rom for sumerstition and that great comeny wi progress in thengt, "I bedieve." IEere there will be wo place far athy story but the truth, and the troth tested by all the means at our disposal.

Further, this journal will be devoted to the stors which concerns us--to the story of our homeland. Tasmania. We leave the datfodil and the nightingale to those who know them. It will be the well-known adome of our homeland bush and the free, rustling gusts of our wild mountain tops that will hill these pages.

Onr am in this Jommal is to present our ideas, observation and deluctions concerning the flowers and trees. the sea shore and inland landsape, the animals, birfls and insects of lasmania. We conscientionsly think that a knowledge of the work arrome us gives a far traer infeal it edncation than the dead past of forgoten peoples, the wombers of other hats. whose existence sarcely concerns ns, and the stories that are called literature but which still are mere liction, and we are of the opinion that to progress we must turn our back on the past, and look to the wonderfal vista of matural science that is daily being unfolded before on eyes.

We know that many slips will be mate from the to time, but this is but a small penalty for progress and progress is the kevolete of our sturly. We know that this publication will reach only a few of our citizens, but it will do good if it brings light to a few who do not consider their education yet completed, and indicates that there do exist in the great word ont of doors forees and facts whose presence is never dramed of by the Saturday afternoon football crowd. Atul we shatlbe more than happy if the revelation of the existence of these mysteries will lead an oceasional enguiting mind to ask himeelf. "Why?" and to go and find the answer, and add his name to the tiny list of those who are endeavouring to place Tasmania on the scroll of peoples who have contributed some assistance towards the advancement of civilisation.

The Tasmanian 没aturalist

THE JOURNAL OF THE

Tasmanian Field Naturalists' Club

New Series-Vol. I. OCTOBER, 1924.
No. 1.

Fish Fauna of Tasmania

The fish of Tasmania are of interest owing to the Southern position of our island, which, in some ways, form a connecting link between the fauna of Australia and the subantarctic regions.
In the grouping of the greater divisions of the zoological kingdom the fishes (Plisces) form the lowest rlass of the vertebrates, or backbone animala, and the lancelets, which are often grouped with the fishes, realy form a crinnecting link between the invertebrates and the vertebrates.
Lancelets are small semi-transparent matine animals found burowing in the sand. They are from 30 to 40 mm . long and ar, withuut brain, cranium, or Jaws.

A consiferable advancement in development is shown by the lampreys, which are cold-blooded vertebrates without limbs or skulls. The mouth lacks jaws., and is in the form of a suctorial disc. Both the Short-headed and the Pouched lamprey occur in Tasmania.

Shark Speeies.

Above the lampreys are the sharks (Selachii) which are distinguished by the absence of a bony skeleton, the absence of the true fish-like scales, and the presence of the five to seven gill openings, which are on the sides. The members of this order constitute the larger predaceons fishes, representatives of which are found all over the world. The seven-gilled and the one-finned shark, Port Jackson, wobbegong or carpet shark. collared cat shark, varied cat shark. spotted cat shark, swell shark, thresher shark, grey nurse and the blue pointer have all been recorded from Tasmania.
The small sharks known as "dog fish" are represented by such specles as the pliked dog fish, spotted dog fish, and
prickly dog fish, whilst two varleties of the peculiar saw sharks are met with.

The angel shark, with its flat depressed body, approaches, in some respects, the members of the next order, the rays.

Rays (Batoidea) are immediately distinguished from sharks by the disc-like form of the body and the fact that the gill openings are on the under surface. Tasmanian representatives of this order include such species as the fiddler, Tasmanian numb fish, rough-bucked skate, thorn-backed skate, smooth stingaree, banded stingaree, green-backed stingaree, sandy-backed stingaree and the eagle (or whiptail) ray.

Ghost sharks (Holocephali) are distinguished, apart from their peculiar form, owing to the fact that they have but one external gill opening. They also possess an erectile roisal spine. The peculiar elephant fish is the more common Tasmanian representative of the order, but the ghost shark also appears here.

Fishes proper are distinguished from the sharks, rays, etc., by the presence of the operculum, or gill cover. The first division contains the trout-like fishes such as herrings, etc. Certain species of cosmopolitan range are grouped within this order, and in the future certain of these should prove of great economic impoftance, ats they are practically identical with European forms which are regarded as of great value.

Australian Anchovy.

The Australian anchovy is practically identical with the Buropean form. The pelagic sprats, both the blue and the robust, occasionally appear in shoals off the coast, whilst the Australian pilchard is very similar to the European pilchard or sardine. The beaked salmon (sand eel of New Zealand) is occasionally taken in Tasmanian waters. It frequents the muddy bottom of certain rivers, growe
to gbout a foot or eighteen inches in length, with cylindrinal body, and a pointed overhanging snout with two barbels.
The jollytail is a well-known form common in estuaries and ereeks. The Mersey jolly-tail is a pariety. Jolly-tails are really minnows, and represent the salmonidae in the indigenous fish fauna of Tasmania.

In the lakes and the higher reaches of the fresh water streams the jolly. tals give place to the spotted mountain irvut. The lake trout, which occurs in the Great Lake and the other lakes and streams at high nititude, is a variety of the epotted trout.
The order under revlew includes salmon, trout, etc., and many forms which have been introduced from other count. tries. As examples of species whleh have been introduced into Tasmanian waters the following may ba mention-ed:-Salmon, brown trout, rainbow trout. Loch Leven trout, salmon trout, American brook trout, sebago salmon. soch eyed salmon, quinnat salmon.

The Smelt.

To return to the Indigenous fauna of this order the Argentine or Slel smelt is occaslonally obtained during trawling operations off the coast, whilst the Australian grayling or "cucumber herring" is sometimes taken on the north-east coast. It was very plentiful at one time, but its numbers have greatly diminished. The small species known as the Derwent smelt ($40-50 \mathrm{~mm}$.) is found In the Derwent, whilst the larger Tas. manian melt ($60-70 \mathrm{~mm}$) or "white. batk" also occurs.
Following the herrings are representatimes of the order Iniomi, Two species belongling to this order have been recorded from Tasmania, the cucumber flsh, which was secured by trawling of the East. Coast, and the lancet fish. The latter is rare. It is a very formidable species, growing up to gix feet in length and possessing "a large barracouta-like mouthful of teeth." The dorsal fin is considerably elevated and extended.
The following group includes such fish as the European carp, gold fish, and English tench, which are not native to our teland, but haye been introduced at various times.

The next group to be considered are the eels, the first order of which embraces the pigmy eele, which are small eel-like creatures found under stones, etc. along the shore. They hove but one gill opening which on the ventral surface.

True Eels.

The true eels (Apodes) have two gill openings on the sides. Some species are found in mand waters, but descend to the sea to breed, the young returning to the lakes and rivers. The short-inned and the closely allied long-fimned eel may be mentioned in this regatel. The larger conger eels are found around the coasts, whilst the hittle couger, which is often referred to as the silver cel in Tasmania, frequents certain rivers and estuaries.

The minute Tasmanian worm eel has been recorded from the East coast.

Following the eels is the order Solenichthyes, to which belong the sea horses, pipe ffsh, bellows fish, and other species of a like nature. The sea horses are typical of the present group. They possess a peruliar elongated tube-like snout. The body is often encased in a series of bony rings. Several kinds of aea horses are met with, including the leafy sen horse. A point of interest is that the male has a pouch and carries the egge abont after they have been deposited by the female.

Bellows Fish.

Three species of Bellows fish have been recorded from Tasmanla, all of which possess an elongated snout and two dorsal fins, the anterior one veing compressed into a spine.

The Plpe fishes, which are closely related to the sea horses, are common in Tasmanian waters half a dozen or more spectes having been described. Belonging to this order is the Opah, a giant gea fish. One specimen has been recorded from Tasmania, and is now in the Tasmanian Museum.

Although Included in a separate ordey the Dragon fishes approach the previous group in that thelr bodles are encased in bony rings. The smout is also produced, but it lacks the tube-like process of the Plpe fishes. The Dragon fish is a small species 50 to 90 mm . long found in many places such as among The shallows of the Derwent estuary. If is occasionally taken in scallop dredges.

Following the Dragon Fish and the Garlish, are the Rock Cods, Whiptails, ete (Anacanthinl). The representatives of this latter group have no true spines in the vertebral fins. Rock Cod are extremely common in many localities, but fishermen, as a rule, do not distinguish between the three species met with. It must also be remembered that In New South Wales the fish there called the Rock Cod in the vernacular, is a species of Gurnet.
Three species of Whiptalls are also found in Tasmanian waters, but as
they constitute part of a family of deepwater fishes, they are seldom taken except by trawlers.
The next order embraces the Dories and other similar fishes. whilst following these are the Ribbon Fish. Both the great Oar Fish and the Ribbon Fish have been recorded from Tasmania They are peculiar-looking fishes, eel-like in form, but the body is greatly compressed.

Flat Fish.

Flounders and similar flat fish constitute the order Heterosomata. The flat fishes are those in which the body is laterally compressed to such an extent that both eyes appear on one side. The very young fry are not very different from the young of other fishes, but they soon begin to lie on one side and the lower eye in the proces of growth travels over the snout to the upper side. Three main divisions of the group are easily separated; one or which has the eyes on the left side, the second of which has the eyes on the right side, whilst the third division has the opercle and pre-opercle practically fused into one member, there being no clevage. This third division embraces the soles. The latter are rare in Tasmanian waters, being only occasionally taken in Bass Straits. The so-called "Sole" of the Tasmanian fishermen is the long snouted Flounder.

Fifty-Five Families.

Following the flat fishes comes the order Percomorphi. This division embraces a very large percentage of the total fish fauna of the island. Many varied forms are met with, but they all agree in having a number of spines in the anterior dorsal fin, whilst the ventrals never have more than one spine and five rays. Forty-two families belonging to this order occur in Tasmania, and for the purpose of the present outline it may be as well to defer consideration of these until dealing with each group in detail.
The following order (Discocephali) has out two representatives in Tasmania. The slender and the short sucker fish. These have elongate bodies with very jough skin. The top of the head has a sucking dise which enables them to sling to larger fishes and even ships. The mailed-cheek fishes (Scleroparei) ire well represented in Tasmania. Inluded in this order are the various gurrets, the richly-colored velvet fish, the cuma, and other gurnards. as well as he several species of flathead.

Cling fishes (Xneoptari) form a small group of fishes that attract but little notice owing to their small size. The ${ }^{\prime}$ cling to stones, etc., by means of an adhesive disc which is situated between the ventral fins.

Following these come the angler fish. or frog fish, which are distinguished by having a movable projection at the extremity of the snout. They are usually met with among weeds.

Leather jackets and other such fish constitute the order Pletognatti, the distinguishing feature of which is the absence of the ventral fin. Included in the order also are the trunk fish and the peculiar sun fish, which pelagic form is occasionally met with off the Tasmanian coast.

General Character of Fishes.

The term fish is one that is apt to be applied in a free and easy manner to many species of animals far removed from the true type. For instance, numerous representatives of the Mollusca and Crustacea are often referred to as shell fish. True fishes, however, are aquatic, vertebrated or backboned aniinals. They are cold-blooded and breathe by means of gills. Their external limbs are reduced to a series of fins, the arrangement and number of which plays a large part in their classification. Whales are occasionally spoken of as though they were a species of fish, but whales are true mammals, and except for aquatic habits have nothing in commorr with fish.

The body of a fish is usually described in detail in three main divisions, namely, the head. the trunk, and the fins. On each side of the head there is a movable flap called the opercle, although in some fishes such as the eels. it is covered with skin, whilst with the sharks, rays, etc.. it is absent. The gills, which are situated under the opercle, constitute a wonderful arrangement by means of which the blood is aerated as it circulates, owing to the constant passage of water through the gills.

The trunks of fishes are usually covered with scales. The sharks exhibit a lowe: form of this development, the scales being of such a small enamel nature as to practically constitute a hard skin. Other fishes have scales with smooth romuded edges, technically known as cycloid scales, whilst the higher fishes oh, a still further development by having the edges if the rales toothed ar avered with small points. The fins of fishes are of great importance in the scheme of
classificstion, most fishes having the fol-lowing:-

A fin on the back known as the dorsal fin.

A tail or cendal fin.
An anal fin situated on the under side just in advance of the tail.
A pectoral fin situated on the side just behind the opercle.
The ventral fin situated on the lower side of the body usually a little below the pectoral fin; but in some of the lower fish the ventral fin is far behind the peetorals.
The ventorals and pectorals are both paired; that is to say, there in a fin of similar shape on each side of the body, while in some fishes the dorsal fin is divided into several divisions or there may be one or more dorsals.

Again, portions of the fins may differ in character, some being separated by means of spines, and some by means of more flexible supports.

Sharks and Rays.

The sharks and rays, although differing conslderably in general appearance, are grouped together in the same order For the reason that they are seen to be closely related when examined in detail. Moreover, there is a coonecting lnk between the sharks and the rays In the peevliar-shaped Angel Shark which is occasionaliy taken in Tasmanian waters. The whole fish class (Pisces) Is easily separated Into two atFigdom, of which the sharks torm the lrat and the bony fishes the second.
The characteristics of the first diviton are the absence of the bony skele-
ton. its place belng taken by cartilege, the absence of the opercle and similar bones of the head, and the presence of paired claspers in the male.

A connecting link between the sharks and the bony fishes is provided by the sub-class Holocephali, under which are grouped the peculiar Elephant Sharks. The Elephant Shark is a common specfes in Southern Tasmanian waters, and upart from its peculiar shape is easily recognised owing to the fact that it has the ghls conceealed under a cartiligenous opercle. Most Tasmanian sharks have five separate external gill openings, but there are two species, the seven-gilled and the one-finted shark, in which the number is increased to seven. In nddition to the ordmary eill openings there Is a smaller opening near the eyc, generally referred to as the spiracle, which enables the fish to breathe when its mouth is burrowed in the sand or otherwise occupied.

Sharks and rays are in the main predaceous fishes, and as a consequence they are well adapted for their method of ilfe. The teeth vary greatly in number and shape, and are placed in rows, which are continually growing outwards, so that a lost set of teeth is quickly replaced. The great majority of these fishes are vivaparous, that is, the young are brought forth allve, but certain of them are oviparous, among the latter belng the Bull-headed or Port Jackson sharks, and some of the smaller Dog Fishes. The Rays, which are in the ordnary sense fairly slow moving creatures, frequenting the sea hottom, are oviparous.

Clive Lord.

Outlines of Tasmanian Geology

Part 1.—Geological Processes.

Chapter I.-Introdectory. The Science of Geology.

Section 1.-Geology.

Geology is the great foundation-ston: science. It teacher us the history our planet, the origins of sea and ad, the reasons for our many kinds rocks, how our present scenery was ranged, and the development of life its multitudinous forms. It is the uay of the great out-of-doors, with e whole surface and interior of the orld for its classroom. We insignifimt mortals crawl on the face of the trth and wrangle about prices and
homors. We undertake gieat ventures optimistically, or spend our lives coaxing a few pence from the unwilling soil, and we prosper or fail. Mother eart! -this globe we inhabit-gives us our success, of rebufis us, and the great controlling factor in the lives of each and every one of us is

Environment.

High above our politics, our trade, our wars, onr petty lives rises this tominating influence. Geology is the science of our environment.

This is a new science, and still in the nfancy; but little by little its facts are peing uncovered, although today even the framework is scarcely apparent Hoo it is a universal science-its truths pust apply equally well all over the Forld, and for all times, or they are allacies. Hence, we in Tasmania have ur responsibilities. We cannot hope to roduce master minds who direct the thole trend of the world's ideas, nor a_{n} we compete with the great centres It scientiffe research, equipped with past paraphernalia in enquiring into the ore abstruse natural laws; but we san escribe to the world our own natural prroundings, and the world wants to now them.
At the recent Pan Pacilic Science Comress held in Melbourne and Sydney eading American geologists were most prsistent in their request: "Don't worry pout theories and laboratory tests, we an do those wetter than you, but give descriptions of your country-we ant that." Now, much has been done this respect, but a vast amount

Still Awaits Workers.

We have in: Tasmania some of the ast known tracts of the Commonealth, but the lew interested in this udy cannot cope with the work. These tes, it is hoped, will serve to give our any enthusiastic trippers and bush Pers sufficient insight into the groundork of the science of geology that they Il realise what they see, as they ena holiday in the bush, and that, see3, they will remember and record. Unftunately, we have no text book of smanian geology, and naturally exples from Europe and America do t appeal to those not specially inested.
It is hoped that these brief notes will Fve to fll this gap until time and Dney are available for something more prthy, and that sufficient will be here and to enable readers to realise the Iden meanning in the scenery they Fe on, and the great foundation plan which our superstructure of civilisam is built. And perhaps some few y be added to the tiny band who are leavoring to show that Tasmania is * backward in contrlbuting her quotn the rum of knowledge, and always remobering Professor David's fine sen-ce-"No work, conscientiously done, investigation carefully carried out, will to affect the economic life of the munity."

Section 2.-Subdivisions of Geology.

Geology as a basal science merges at many points into other branches of knowledge. 1t draws much of its data from astronomy, chemistry and physics. and it supplies the historical background for botany, zoology and ethnology. Again its many branches have each become the subject of special studies, but ge. ology uses all these sciences, as it requires their assistance, and unites them to explain the history of the world and the landscape and its inhabitants.

In the first place it draws on astronomy to assist in explaining the origin of the world as a planet, and the first branch of our subject is

Astronomical or Cosmic Geology.

But most geologists leave this branch to the astronomer, as too vague for practical study. Next comes geotectonic seology. This deals with the architecture of the earth's outer shell as a shell. It is world-wide in its scope, and although most important, requires very extended travel for study. This branch merges into the new science of geophysics-the study of the principles of physics that govern the tehavior of the surface of the world-on the one hand, and into dynamic geology on the other hand.

It is with dynamic geology that our subject really starts. This 'branch. starting with the shell of the earth as we find it, extumines and explains all the processes by which it is built up or broken down, or in any way affected. Having mastered the processes, their origin and effects, we can proceed to the next branch, physiographic geology, Which explains by what process a given landscape has been moulded into its present form. It tells us the history of the countryside.
Now, during the earth processes that have built up the surface of the world as we see is today, rocks have been formed and remains of plants and animals have been enclosed and preserved. The branch of geology which examines the nature, composition, ant formation of the rocks as individual masses of matter, is ralled petrology. It has a large subdivision mineralogy, which exanines the structure, texture, composition, and form of the conslituent parts of those rocks. The branch which examines the traces of life is called palaeontology. Both of these branches have become separate studies, but both are
essential to the complete understanding of the history of our landseape. Finally, when all the information these branches can give us is collected, we can give a

Falrly Complete Histery.

of our chosen piece of landscape. When much of the surface of the world is so investigated we can give a mistory the general outlines of which hold good everywhere. This branch is known as systematic or historical geology.

Finally when these principles are undesstood, and are worked out for a given diatrict, they ean be applied to assist the minor, farmer, and englneer, and to guide the geographer, economist and politician. This part of our seience i; often termed economic seology, and its various branches are given such names as mining geology, agricultural geology, ete. In reality geology has no such subdivisions, These are the practical application of the princinles of the science to a given set of facke.
A. N. Lewls.

Chapter II.

The Globe

(Astronomic and Geotectonic Geology.)

(Section 3.)

The Early History of the Globs.

Thit chapter is a summary outline added solely to make our story complete. The subject is not of less relative importance than other divisions, but to study it, the whole world mast be taken as a single unit, and Tasmania can add little to what is now found in standard text books. to which readers are referred for a fuller statement.

The early history of our solar system and of our world as a planet is shrouded in mystery. Much light has been thrown onthe dawn of our history by the lessonst of astronomy which can show how other celestial bodies may be born, grow oll, and be extinguished, and physics gives us a guide as to the possibility or otherwise of many frocesses.

Three great schools of thought have held sway luring the last sixty years. These, in order, have been:-(i) The Nebular Hyoothesis, first put forward by Laplace. This theory assumed, first a great gaseous nebula sufficiently extensive to cover the whole of our solar system and containing all the elements of the minerals we now know, but so intensely hot that they existed ouly in the torm of gases. Nebulas certainly exist in the heavens, but it is doubtiful whether they consist of gaseous material. Ola parent nebu'a was supposed by coolins and by the action of "gravity" to have gradually sommenced to revolve. Aa the
process continued, the materials separated into rings and later into separate bodies revolving round a nucleus. These bodies, by the same process, beeame mort and more compact. Our globe, as a typical one, in time cooled suffeiently to form a hard crust covered with water, and with a still molten interior. As the globe cooled, still more, it shrank and thus buckled the erust into continents and mountains. This theory necessitated the idea of a cooling and shrinkarg globe. Today we know that almost every detail of this hypothesis is unsound.
(2) The Metforitic Hypothesis.-This Was favored by Lockyer and Darwin. It explained the origin of the solar system to the collection of moteontes of similar small bodieg moving frealy through space, and continually augmented ly a rain of simila particles. The partieies were at fret cola, but by continual riction the temperature rose to a great heat. Later the world started to cool down. This theory also is known bow to be untemable.
(3) The Plandesimal Hypothesib, ndvanced at the begimning of this century Wy Chambertain and Salishary, two great American geologists, and both still living. This theory postulates the origin of the solar system. from a nebula consisting not of gases, kut of small solid bolien revolving in slishtly differont courfos round a central core. The nebular thew out great spiral arms and the particles in these, colliding from time to time, gradually formod knots which in the
course of time collected the material of the arms of the spirals round them, and consolidater into the planets, with the central mass of the nebulia as the sun. This theory implies that the materials that formed the planets were originally cold and that heat was produced by friction and pressure. The Planetesimal Hypothesis has proved the preceding ones to be wrong, and today scientists consider it contains itself many elements of uitruth. As yet, no comprehensive theory has been propounded tos replace it, and our ideas as to the early fistory of tho planet are in the melting pot.

Section 4.-The Globe.

Although we have so little accurate knowledge of the early history of the world. and although we know more about the moon, the sun, and stars millions of miles away than we do about what is five miles below the surface of the planet on which we live, still, we do know certain basic facts ahout the globe which are the foundations for much of the science of geology. These may be summarised as follows:-
(1) The earth is rigid. It does not consist of a "crust" surrounding a molten interior. The speed with whicin the impulses given by earthquake shocks are transmitted through the sarth they travel over 8000 zailes in 21 ininutes) in relation to the sperd they travel round the surface, is suflicient to indicate that the interior of the globe is of much greater rigiaity than the finest steel.
(2) The interior of the earth is at a far higher tempemature thin would be necessary to melt the materials at the surface. This temperature is induced primarily by pressure, and it is the same pressure which keeps the globe rig:d.
(3) While the earth is very rigid, still it is plastic, and will yield to a change of pressure.
(4) The average density of the whole globe is greater than the average density of the rocks at the surface. (S.F. 5.5 as against 2.7). The lighter mat rials form a covering around the heavier ones towards the centre. but are of insufficient quantity to cover the whole surface cif the giobe. These blocks of lighter material form the continenta. On account of this, blocks of the surface of the world occupied by continents do not exert more pressure on the underlying core than blocks occupied by ocean depths. Owing to the difference of suecific gravity, the whole crust exerts equal pressure on the core, each
block is in , what is called isostatic equilibrium.
(5) If this is upset, the plastic core yields to the pressure, and great geotectonic and continent building movements result.
(6) Volcanoes and similar themmal activities are not connected with the molten interior, but result from a release of pressure resulting in the fusing of portion of the rocks near the surface.
(7) The mass of the world consists of one type of rock material. Exising differences in rock types are due to local and superficial causes.
(8) Change, and not stability, is the order of creation. The surface of the world is continually changines, hut is not changing in a haphazard way. It is growing, and, being built according to a plan which can be recognised.
(9) The general relative positions of the great land masses have always been much as we now know them, but they are continually being augmented round their exterior edges.
(10) Whatever was the original condition of the world, it has not grown appreciably colder during the long course of geological history, At the very dawn of history (say, 1000 million years ago), we find ice covering a far greater area of the world's surface than it loes today. and the seasons alternating in mafor and minor cyeles much as we know them

Section 5-Continent Building.

As we have indicated, the great landmasses of the world appear to have been relatively permanent since the dawn of geological history. The core of each of the continents consists of the very oldest rock we know, and these cores have not been greatly altered since the earlient times. Round these cores the continents have been built by the addition of successive layers of material erushed against the older and stable woks from the outside. In this core we find the oldest known rocks of the surface of the earth. They are so affented by compressive movements that their original form is umrecognisable. If later rocks nectur on top of the older ones, these have not been affected by great compression. Farther out towards the edge of the continent we find more recent rocks as compressed and contorted as those of the core. If these, in their turn. are covered by still newer beds, we find these have not leen so affected, and so on, intil in many places on the outer rim of the continents we find the building process continuing, or, for the moment, just completed.

THE TASMANIAN NATURALIST

It is recognised that pressure is contimually beng exerted towards the centre of the earth. Whether this is due to that indefinite and little understood force we call gravity, whether in response to pressure from outside, whether it is due to molecular attraction of the constituents of the earth or whether the process is just one of arystallisation, we do not know. But we are justitied in assuming that the materials of higher specific gravity have a tendency to move towards the centre of the earth and to squeeze the lighter materials up into ridges and prominences. The portions of the earths surface occupied by the great ocean depths are evidently those portions with the highest specific gravity, and they have a tendency to move towards the centre of the carth, forcing, in the process, the great land masses, representing the mreas of naterial of lower specific gravity, higher above the relative level.

For some reason, not yet adequately explnined, certain centres of the eartli's sulface

Reached Stability Very Early.

s the portion sof the surface represented ite ocean depths progiessed in this aidu. movement towards the centre, the ederes of these land masses warped in a reat incline towards the surface of the sinking masses. These inclines, being onesided folds and being of very considerable length, are known as geomonochlies. (ge the carth, mono-single, cline-fold.) These produced under the sea bordering the shores of the continents, great submerged plains, known as the continental shelf, on which all the sediments worn from the land were deposited,

As the sinking process went on these blocks of the earth of necessity had to fit into a somewhat smaller space than they had occupied before, and naturally the more dense segments squeczed those of lighter material out. The pressure was greatest between the sinking segment under the ocean depths, and the already stabilised land mass, that is on the geomonoclines where these great deposits of sediments had accumulated.

When the pressure came on these great beds of newly-formed rocks they tended to move horizontally in response, and would have done so had they not been prevented by the mass of already. formed land. As it was, they started to fold and buckle, the portion next to the stable mass bending upwards into fold or geanticline, while the next portion folded downwarda into a trough or geosyncline. This folding continued until the compression of these rocks gave the moving pigment all the room it re-
quired. If the pressure continued lons enough these folding portions were con pressed against the land mass unti] thes were compressed to their utmost, whet it second and even more series of fold: formed out towards the oceans.

The folds thus caused formed a

Fringe of Now Land

along the outer edge of that already existing, und ugainst which the pressura had been exerted. Very often the folds were raised into lofty mountain chains bordering the coast of the older land and succeeded out to sea by a great "deep," which in turn was succeeded by the next fold rising in succession, of ten represented by a chain of islands.

This process is a continuing one. It has been at work from the earliest times, and is still going on; but because it is working on huge masses of solid rock which offer great resistance, the tendency is for it to move in spasms, The pres sure increases until it is sufficient to overcome the reaistance, and then follows one of the great periods of mountain building which have occurred at inter vals throughout the world's history.
'L'he picture we thus get is of a nucleus of solid rock succeeded ontwards by a succession of folds decreasing in size and gradually reaching the level of the great ocean deeps. The mucleus has become stabilised, and is solid enough to resist the pressure. The segment of the earth's crust under the ocenn deep is exerting the pressure. Between these is a great mass of yielding rock. The upper portion. known as the zone of fracture, is bending, and after breaking under the strain, and in many places is being raised into mountain ranges. The lower portion. known as the zone of flownge, is, as a result of this tremendous mressure, beine squeezed into conformity with the folding. And is altering its nature to oe cluny the less space allowed it.

These processes can be clearlv seen in various stages in Australia. Near Broken Hill three separate series of such foldings have been successively folded into older land masses. Jater another great mass, with its centre at Cobar, was folfled ngianst them. This was followed by another farther east, and finally we have the

Great Dividing Range

on the coast. The Pacific Ocen is one of these areas of greater density, and is continually forcing the rocks of the geosyncline against the continent masses. The Rocky Mountains and the Andies are the most recent examples of this work on its eastern border, and in Japan and the

East Indies and New Zealand the process is going on under our eyes.
The result is that, apparently, our continents are being continually augmented from the outside as the ocean deeps continually sink. Round the borders of the great oceans deposits from the shore are being continually folded into great mountain chains for the processes of erosion to level again, thus building the continents. When once a land mass has reached stability, it is never again subjected to great contortions, and hence all
our existing high mountain ranges are of relatively recent age, and the voleanic and earthquake regions of the world are the places where continent building is progressing today.

But much of this is speculative as yet. Our se:ence really starts with the land masses as we find them. The phenomena that mould these continents, however formed to the landscape, we now see are well known, and we will now start to deseribe them.

A. N. Lewls.

The Gum Tree

Amongst the earliest records that explorers made of their experiences in Australia was the fact that a large part of the land was coverel by trees which produced a timber of hard, heavy and durable quality, and which was peculiar for having veins of dark ret, resinotis gum throughout the wood. For this reason they called the trees by the popular name, which they still bear, of gum trees. Botanists following in the wake of the explorers grouped these plants into genus, to which they gave the name of Eucalyptus. . The chief peculiarity noted in this group was that the flowers had evolved an unusual form, in that the colored portion, or corolla, was apparently absent, and its place taken by a cap which fell off at maturity, exposing very numerous stamens.
Research throughout Australia has discovered about two hundred sp:cies of gum trees, yet though so numerous, only very few forms have been found beyond the confines of the continent.
The gum tree is the typical tree of Australian foresta, and therefore should be recognised as

The Australian Emblem.

It well deserves this position, not only from its meny forms, which ε re almost conflned to Australia, but from its universal distribution throughout that area, and above that, for the enormous size which many of them attain. Some eucalypts reach dimensions which vie with the giant trees of California in being the tallest trees of the wor'd, and in favorable situations it is not at all unusual for trees to exceed the fxtraordinary height of 300 ft . The timbers of eucalypts are varied, but always hard and heavy, and the woods prodiced by this genus are fit to take the place
of any hardwood timber of the world, whether oak, ash or mahogany.

In Tasmania we have about twenty different species, and some of thespare amongst the noblest specemens of plant life to be found anywhere in the wrild. The hlue gum (Eucalyptus globulus) grows to a very lig tree wherever conditions are-favorable, and it does so in record time. Fef, if any, trees of other parts of the world produce such a great quantity of wood in a given time as thi stree, and this wood when prope ly mature is of most excellent toughness and durability. Blue gum may be readily knewn by its long sickle-shaped leaves and large, solitary flowers. An interesting matter concerning this tree is that in its young condition, as well os in response to injury. the leaves are large, have no stalks, and are placed scuare to the sunlight instcad of being pendulous. This is generally considered to inclicate that onco the tree Hyed

In a Less Bright Atmosphere.

and as climatic conditions changed to intense isolation. the tree responded hy changing from the broad, sprea? ing foliage to the pendulous condition now existing, in order to avoid the evil effecta of too intense a light.

The various forms of white gum behave similarly. This tree does not attain the gigantic conditions of the lastmentioned, and may always be recognised by the flowers being small, and with three together in the axils of the leaves.

Stringy-bark, or messmate, is one of our most useful trees. It attains ma. turity of timber quicker than does bluegum. and is more easily split into thin slabs. It may be recognised, not only by its thick, fibrous hark, but
also by the flowers belng many together, and the characteristic leaven, which are very unequal in size, on rach side of the mid-rib. The thickness of bark has a direct purpose. It protects the tree from destruction by firc. A bush fire must be very intense to kill a stringy-bark.

Gum-topped stringy is our commonest, and perhaps most useful, tree. It is very similar to messmate, only the clothing of flbrous bark is thinner, and dues not extend as far along the branches. It is an excellent substituto for European ash.

Mountain ash grovs to a pigantic tree, and has smilar leaves and flow. ers to messmate; but the maris is mon: 1 , from the base. It readily falls

A Vietim to Fire.

The wood is straight-grained and flssile, but is less durable than that of related species. It is commonly called swamp-gum, which is an unfortunate name, as it leads to the belief that it produces inferior timber, whereas for the purpose for which it is best suited it would be difficult to find its supertor.

There is a group of gums, consisting of about half a dozen species, which have a very close affinity to cider gum This latter is very like white gum. wit:a three flowers in each flowering axil; but the leaves are er,ual-sided, and not sickle-shaped, as in that species. The members of this group vary greatly in the shape of the capsules. Cider gum has small, oblong fruits. Yellow gum. which bears the strongest, most durable and elastic timber of any Tasmanian cucalypt, is very similar te cider. onl* the capsules are rather larger; heart. leaved gums, with large, globular cap sules, and always opposite, stalkless leaves. Urn-gum, with capsule-shaped. IIke a Grecian urn, and dwarf-gum, with small box-like leaves, which s:ldom grows more than 3 ft . high.
The peppermints are always sma!1 treer, hut ihey have two good rualities: they will grow in

Soll Too Poor.

for aly other tree, and their timber is most durable. There are three peppermints, black, white, and blue. Black peppermint has narrow leaves, many flowers in the bunch, and fibrous baris. White peppermint if a variation of this, with smaller Howers and narrower leaves, but the nark is smooth from the base. It growe principally on hills. Blue peppermint is very d fferent. The fruit is larger, and the juven-
lie lenves and also all the leaves on trees irrowing on poor, dry soil, are opposile, and comnate across the stem. The form of blue peppermint which retains the juvenile form of leaves, even when mature, is often called the Risdon gum.

Encalyptus appear to have one disadvantage, in that they bear very small seeds, and therefore have not a large store of reserve for the young plant to draw upon till it shall be able to construct food for itself. The effect of this disadyantage is greatly increased by the peculiar consticution of the plant demanding for it a full exposure to sunlight. As a rule, owing to the gum trees having pendulous leaves, the light of the sun is but little impeded in its passage through the overhead foilinge, with the consequence that below eucalypts the soil maintains a copious vegetation of shrubs and small trees.

The seeds tialling from the capsuls reach the soil beneath these shrubs are enthen do not germinate or, if they do, they are smothered in their infancy. This is why so few young trees are found in a normal gun forest. To combat this eucalypt trees have evolved an effective means of reafforestation. When they have flowered, and set seed in their capsules these

Capsules Do Not Open

and allow the seed to escape, but remains closed during the life of the stalks bearing them. Now if a bush fire comes along it destroys not only all undergrowth, but kills at least all the small branch. es. This ents off the moisture supply of the capsules; they dry up, open their valves, and the enclosed seeds fall out ou to the now bare soil.

Fucalypt seeds germinate very rapidly, and usually bee a fair start from the weeds. There 1 s now a struggle for existence. If the seeds of rapid and dense vegetation lappen to be present the young gums will probably have a bad time. On the other hand, if there is any delay, and the eucalypt once get a chance, they being rapid growers, the probability is that there will be a dense crop of young gums, which, in its turn. will for a few yeurs inhibit the growth of underscrub.

The condition of Tasmanian forests is that of most wondlandy which have been raised under purely natural conditions, They consist of trees of varions ages. Some long past their nrime with dead boughs and totten heart, which are of no scrvice but to supply firewood; a few are in a good atate for the axe, and many too young for a:lything better than poles. This is what you always get where trees have been left to

Fight Out Their Lives

for themselves. There is only one way to secure a betier condition, und that is to clear praccically everything off the land and raise a new crop all of the same age.

This is hardly reasonable in the present, but with the rapid elimination of soft wood, the diy must osme when
hardwood forests will be of much greater consequence titm in the present. Some of our choicest timber; such, for instance. as the yellow gum of Uxbridge, grows in small numbers in out-of-the-way plases. It would be a useful thing to plant small experimental areas under pure forest conditions as a test of what can be done with good trees and waste places.
L. Rodway.

Chapter III.

Features of the Landscape

(Dynamic Geology.)

Section 6.-Mountain Building.
Mountains are elevations on the earth'u surface which rise above the general level of the country. Height, size and shape are immaterial and of infinite variety. A large extent of high, but relatively level, country is not called a mountain, but a plateau, e.g., the central plateau of Tasmania; in Victoria the term "high plains" is common, and prominences attaining a lesser elevation are called hills. The principles which govern the formation of these three features are similar and the following remarks whll, in general, apply to all.

Mountains may be classified into:-
($($) Formation mountains (i.e., porHons of the landscape that have been raised to a higher level than the surrounding country by some geographical process).
(1) Folded mountains (i.e., those formed by the folding of portion of the earth's crust in response to lateral pressure).
(2) Block mountains (i.e., blocks of the crust that have been raised bodily above the surrounding country).
(3) Domed mountains (i.e., those formed by pressure from below bulging the surface into a dome).
(4) Volcanic mountains (i.e., those formed by outporings of lava or volcanic ash).
(b) Resldual mountains (i.c., those formed from a once extensive elevated tract of country by the removal or sinking of the balance of the landscape).
(1) Mountains of circumerosion (i.e. the elevated areas left when the bulk of the original plateau has been worn away).
(2) Residual block mountains (i.e., the portion of a once elevated plateau
that have heen left when the bulk of the country has sunk).
The formation of residual mountains is really the story of the formation of the valleys that separate them. We will leave this olass therefore until w_{B} discuss the development of valleys.

Origin or Mountains.
All the mountains included in the class "formation mountains" owe their origin in some way or another to the same cause. That cause is the same series of earth movements which we have seen is responsible for the addition of belts of new land to the older continent masses, the aqueezing of accumulations of sediments, deposited off the coasts of the continents, against the older stable core of the great land masses by the sinking of the blocks of the earth's crust of higher density than the average and which are represented by the floors of the oceans.
A mountain, whether an isolated peak like Mount Weilington or a continental cordilesa like the Rocky-Andean chain is essentially a feature of relatively recent growth. Immediately on elevation the weather starts its work of breaking down the newly-formed mountein, and after a space of time, by no means long according to the geological scale, the mountain range is reduced to a succession of rolling hills-"downs," as they are termed in England and north-western Tasmania; plalns as they are oalled in Australia, and prairies as they are called in America.

All the great mountalns we now sce on the map of the world arose during the more recent epochs of geological time and from the mere existence of a mountain at the present day we can argue the ocurrence of great earth movement at that spot in the no very distant past.

Further, we see from our aths that all the great ranges of the world are grouped along the outer ecige of the important land masses. They are, in fact, the newest layers of land added to the continents, and are the ridges of rock compressed against the older cores of the continents, which the weather has not yet had time to level to a maturer contour. Also we see that the lines of these newly-formed mountain chains are also the lines of volcanic activity at the present time, and also mark the portions of the earth's surface afficted by earthquakes. These new mountain ranges, volcanoes, and earthquake shocks are all phenomena resulting from the same cause, and are ali indications of the building of new land.

Folded Meuntains.

When pressure is applied, as above explained, to a bed of newly-deposited and relatively horizontal strata, the first impulse of this bed is to yield laterally. This inclination is resisted by a block of the earth crust more stable than the bed of strata, and if the pressure cimtinues, and is sufficient to overcome the resistance of the strata, folding begius, and the strata are crushed against the stable section, known in this connection as a "remmier block." Folding, therefore, implies pressare, and a stationary mass or anvil against which the pressure is exerted. In any une region prestime comes, at a rule from one nide, and is exerted in one direction, althongh it is possible for pressure to be exerted from both sides of a block of stiata, each locus of pressure acting as the remanier block to the other.
The first tendency is for the edge of the block of strata nearest the remanier block to buckle into a fold. This fold will be at first broat based and fatat. As the process contimuts $t \mathrm{t}$ will rise into a sharper ridge, and wo will soe the zradual growth of onr mometain range. The fold will seldom be uniform-sided, because the movement, being all from one side, will tend not merely to bend the strata, bat te: nue nuside portions under the interior ones.
The pressure will be coming from below and from the outside, not from above, or in an absolutely horizontal plane. This iends to overtirn the follis on the older formed roek or on emblier stages the shapes of regular, broad-basgreat heds of the outer prrtion of the folding strata over, under, or throngls the inner portions. This wo wet folded monntains assuming in their carlier stagesthe shapes of regular, broad-based, domed ridges, but as the process con-
tinues there folds sterpen and finally ayertaras and breatis, teaving ragued edges and broken exarpment, and the grander fentures of our more lefty mountain tanges.
In lasmanm we have ha sithutans whose existone in then present turn can be nascribed to this process oi folding. Certainly the rocks of the western inghlands are intensely folded. Prosbably they formed portien of an sucient mountain chaim, but this range has long since disappeared, leaving a mere core of folded and contorted strata. These strata have been raised somewhat, and then blocks have been isolated into the existing momtains at a later date, and by very different processes than the ones that originally folled the rock.

Block Mountains.

The existence of folded rocks is usu ally an imbication that these rocks were at a considerable depth, and hence under great pressure when the pressure was applied, otherwise they would have merely broken. A bed of rock on the surface is in general too friable to bend. but if the pressure was sufficient. would buckle, and break into blocks which would yield to the pressure, and, if necessary, slide over each other. It is only when the pressure is so great that no movement is possible that a solid mass of rocks will folld. Although this is the rule. folding occasionally occurs at the surtace in peruliady tavorable conditions, and is now occurring in Papua, New Britain, and British New Guinea.

When the pressure due to depth, and the pressure due to lateral forees are very considerable the rock mass may be reduced to a plastic condftion, and assume the qualities of a liquid, flowing in any direction possible. Areas and zones in the crust where this condition exists are kifown as

"Zones of Flowage."

They can only oceur where the pressure is sufficient. In them all pores and fractures are cloged, the rocks often take on different forms, and the strata conforms to such shapes as the pressure imposes.
Nearer the surface the rocks are treer to move, and to yield to pressure. The portion of the crust is known as the "Zone of Fracture." Here the beds ot atrata are not folded, but break. When pressure comes on, this portion, or where the tolding of rocks below it, nearer the centre of the earth, exerts forces from
below, the strata of this zone of fracture tends to conform to great masser of the landscape, are forced more or less vertically upward, above the general level, and other great blocks tend to sink. Hence we get the formation of the type of mountains we have ealled "Block Mountains." They are characterised by abrupt faces descending to the neighboring valleys, but their rocks have been pushed up as a whole. and although probably tilted to a greater or less degree in the process, and often much broken, they are not lolded or compressed at all.

Block mountains are probably very often the mere conformation of the surface beds of strata to the foldings going on very far below. The portions of the surface, over the upward arch of a fold, being free to move, are forced to a block to a greater or less elevation above the surrounding country and the portions over the downward arch of the strata drop below the general level. But it is

By No Means Certain.

that all block mountains are so formed. The surface of the crust may often adjust itself to differing conditions, or to a general shrinking by breaking into such blocks, some of which are foreed ut, while others remain stationary or dopp without any corresponding tolding below. But, on the whole, it is milikely that block mountains could be formed ou may scale without folding of the strata below.

Block mountains tend to result in plateaus and flat-topped ranges rather than the lagger, fantastic peeks and rator-bucked ridges that folding gives us. Most of our Tasmanian mountains in common with the whole of the Great Dividing Range running the length of the eastern coast of Australia, belong to this type.

Mount Wellington, Ben Lomond, the Central Plateat, and all the mountain groups of the south and of the middle west and north-cast of Tasmanin, show the typieal form of block mountains. They have all fat, plateau-like tops, and steep sides, dropping to, usually, broad flat valleys. They are evidently blocks of the surface strata of this portion of the earth's crust that have been forced up to their present elevation as blocks. There is often a certain mount of tilting, but no folding.

It is unknown, as yet, whether these block mountains represent merely an attempt of the surface strata to edjust it-
self to a smaller space necessary through the general shorteaing of the earth erust, o^{2} whether the presstre from the eastward or south-eastward-that is from the lacifie brsin, more partictiarly the Tasman Sea basin-has

Squeezed These Blocks

up to form the mountains we now see. The writer suggests the latter alternative is the more probable.
Perhaps our more important mountain ranges are merely the surface indications of great folding movements that have occurred deep down in the earth. It seens quite possible that preasure originaling as has been described was appliet from the south-eist and east on the great leposits of seliments washed from the ancient land that once existed to the west, of which on West Coast mountains Hee a fragment, and deposited off the coast of this land. The ancient rocks of the West Coast supplied the remanier hock arainst which these sediments were aqueezed. Deep down in the erust. folling resulted. which has not yet been exposed. jut having oceurred in relatively recent times. The largest fold occurred nearest the oid and stable rock masses. Farther east this was followed by a great trough with a lesser fold, and a lesser trough farther past, ami finally the smallest fold of the three in the vicinity of our present Rast Coast. These folds. as is usually the case, were by no meane regular, but move pronouncel in some phaces than others, and were broken by many transverse folds at approximate. fy right angles to the main lines.

The surface strata not beine restrained by any pressure or weight of superimposed rook. did not fold, but broke into great blocks in conformity. piving us elevated tracts or block montains over the upward folds, and

Dropping to Deep Valleys

over the downward folds. Thus, where the lagest fold occurs nearest the ancient rocks of the western side of Tasmania we have the most elevated biocks of these newer mountaias-La Perouse, the Hartz Mountains, the Snowy Mountains, and Monnt Wellington. Mit. Fied Ranges, Mt. Gell and its neighboring ranges, Mt. Olympus, the Du Cane Ranges, the Pelions to Barn Bluff, and Cradle Mountain.
This mass is followed by a line of gleat valleys-D'Entrecastreaux Channel, the Lower Huon. the Derwent and the Forth Valleys. Farther east. there is a lover and less defined series of mountains, Bruny Island. the mountains east of the Derwent and the Central Platean being the most striking.

These in turn are followed by another line of valleys-Petta Water, the Coal River Valley, the Midlands Valley, drained by the Macquarie River, the lower: South Esk Valley and the Tamar. Finally, along the East coast there is a line of mountains, also decidedly of the block type, but of less altitude than the others, and from which the East coast drops sharply. In the north-east corner of Tasmania, there are also some older rocks, and against these pressure has also been applied, giving us the

Ben Lomond-Mt. Victoria Plateau,

 separated from the East Coast tiers by the valley of the Upper South Esk.This theory to explain the origin of our mountains is advanced here for the first time. It is still only a theory, and has yet to be proved, but all earlier theories attempting to explain the reason for our mountains are more or less erroneous and this one avoids some of the worst objections that can be raised t_{0} the others. It is here only given in barest outline; in fact, only as an indication of a possibility and must not at present be stated as if it were an established fact.

We must now pass on to our next type.

Domed Mountains.

Great beds of strata are seldom of the same material throughout, but more usually hard and soft layers alternate. When pressure is applied during folding movements, naturally, layers of different hardness respond differently. The layers of hard rock tend to fold, pucker, and sometimes to break and overthrust other layers. If the stress is so tremendous that the relief given by these movements cannot accommodate the rocks to their restricted space, the individual particles and minerals tend to re-arrange themselves, and alter so as to occupy less space. On the other hand, soft rocks cannot stand the strain which would merely bend hard layers, and are crushed beyond recognition without much opportunity to fold, and are squeezed between the moving layers of hard rock and forced into cavities where they occur.
It is well known that although ordinary water turns into steann at 100 deg . C, water in ordinary engine boilers attains a temperature double that degrec before turning to steam, and special appliances can be made whereby the temperature of water can be raised to 1000 degrees or more without it turning to steam. This ic

Because of the Pressure

it is under, and the greater the pressure the greater the temperature the water
can attain without turning to steam. Bn immediately the pressure is released wate over the temperature of 100 degreas wi forthwith become steam.

Similar prineiples hold good with roe masses. Juring folding processes a hea is generated by the pressure far in en cess of vhat would be reguired to med these rocks at the surface, but the sam pressure prevents their fusing. But ofte spaces, pockets or fissures, will occur Often a hard layer will arch as the resul of the pressure and leave a cavity below It is the softer rocks which are feelin the stress of the pressure most and ofte when this pressure is released, by, per haps, the arching of a layer nbove, o the slipping of some higher bed aeros another, or by the rising of a block of th crist as the result of the pressure, som of this soft rock will fuse; that is, be come molten.

This, in its turn, tends to relieve th strain, due to the folding. Instead o laving to squeeze solid rock, there is onl the resistance of a liguid to be overcome The pressure exerted against this force it through eracks and weak points in th surrounding rock. Its own heat tends t melt more and more of the surroundin strata, and thus a "magma pocket" formed. These, as can be seen, nsuall. occur under the upward arches of th folds. As the pressure continues, quan tities of this molten magma are force through the surroming rocks, in larg sheets (sills), or upward pipes (dykes), o irvegular-shnped masses (laccoliths). 'Tl fore of the pressure is innch more effec tive on this molten matter than on th resistant sold rock, and where it cat

Merely Fold and Twist

the lutter it can force the molten materia right out of the affected area.

Often this molten magma is formed nea the surface through the release of pres sure caused by the displacing of a surfac block of strata, or again it may be force towaris the surface by the great pressur below. When it reaches a spot where it own pressure is sufficient to bend th strata above it, it forms a "domed mom tain." This type of mountain nlway has a core of rock that has been onc molten, called igneous rock, which, of it own power, has forced the overlying rocl up into the mountain we now see, an this orerlying rock is bent round th igneons rock. Such monntains are terme laceolithe when the igneons material i in the form of a definitely bounde magma pocket, and a batholith when th igneons material has no ascertainable bottom.

Naturally, rock may fuse and forn pockets, or sills, of igneous material with

THE TASMANIAN NATURALIST

out having sufficient power to bend the superimposed strata. It then does not form a domed mountain, but is found merely as a mass of jineous rock embedded in rock of different structure.
Most of our mountains of central, east and south Tasmania are of these natures. Wiew definite laccoliths or domed momtains have yet been identified. The Domain, Hobart, is probably a laccolith, and gimilarly many smaller hills of the East Coast. Trinity Hill, Hobart, certainly ppears to have been formed by the trata being bent by igneous rock from below. But most of our mountains in this part of Tasmania are masses of igneous Foek thas formed, but which have not had any definite effect on the overlying trata. They stand in their present posifion not through doming the surrounding Fock, but either through raising it bodily as the result of being squeezed upward by the same process as originally fused he original rock, or by being lifted bodily y later, though similar, forces, after aring entered and transgressed the arlier sediments.

Volcanic Mountains.

A_{B} is natural, when the molten magma being squeezed and pressed through verlying rocks, sone will often reach the surface. We then have a volcano. These are important, but quite subsiiary, agents of mountain building. The aotten material ustally works along a reak bed of strata or up a crack or weak lace in the fold. Usually these are bund on the forward side of the folds; hat is, the side opposite from that from hich the pressure is bring exerted. It the continuance of the pressure due 0 the folding process that forces the colten material out on to the surface, ad eauses volcanic eruption.
If the molten rock pours out on the arface, we have lava hows. These are
iten of great extent. In the Deccan, in india, one ancient lava flow covers 200,000 tuare miles to a depth of over a mile. third of Victoria is covered with ancient lava flow, and similarly most the North-West and North coasts of asmania. If the lava is viscid on reach\% the surface, it often piles up into lils of considerable height. Many hills and Melbourne are so formed, but in asmania there have been no volcanoes very recent date, and with our deavier infail the

Ancient Lava Flows

ve been greatly reduced, so there are * hills which we can definitely say were
due solely to a lava How: The hills of Droughty Point, south of Bellerive, are due to this cause, and the hilly country round Deloraine, between Devonport and the Forth, from Burnie to Waratah, and round Stanley and the extreme NorthWest, are alt relics of old lava flows, much cut into, however, b: the numerous streams which eross them.

Often very little lava pours from the vent of the volcano, but from the crater showers of stones, ashes and mud are thrown into the air. These in time build H_{1}, ver'y considerable monntains, known as volcanic cones. Mt. Egemont, Mt. Ruapelin, and Mt. Tangariro in New Zealand are so formed, and are sufficiently high to be permanently now-capped. In Tasmania, we evidently had at one time many of such mountains, but they have not survived our rigorons climate. Cornelian Bay cemetery, the recreation ground at IJindisfarne, Fort Alexandra Hill at Sandy Bay, were once volcanic cones, and there were dozens up the Derwent Valley and through the Midlands and along the North coast; but such mountains composed of finc. ash and mud are very soon levelled by the action of the weather.
Thus the ancient idea of a rolcano as being a pipe comecting the momatain with the monten core of the earth, or as being a natural safety valve is quite erroneons, and we have endeavored to explain that all mountains are built by the processes generated by the sinking of the heavier blocks of the ear'th's surface, squeering ligliter portions out and upwards. Some writers use the terms "epeirogenic," or continent making, movements to describe the formation of block mountains and "orogenic," or mountain making, movements to describe the formation of folded mountains; but these terms are misleading. As we have endeavored to explain, alf typers of monntains are but difierent aspects of one great process; all are but different results of the one canse. Finally these procerses are infinitely slow. No monntain is formed by them alone. As soon as a momntain berins to raise its head above the surrounding country rusning water and the weather begin to attack it. and these forces really give the figure to the surface, and determine the details of jts outline: the mountain building forces merely giving its general sub stance.

Section 7.

Folds

Having seen how these features have their origin we must now discuss them in somewhat greater detail and determine their peculanities so that we may recognise them when we meet them in the field.

They may be of any size, from a bent a few feet high such as can be easily studied in a road cutting, to one many thonasnd feet in radins and covering several miles, in which case it isoften only possible to detect its existence by measuring the dip of the rock in many places and tracing one layer of rook over a large area. The arch or upward bend of the fold is known as an "anticline," and the trough or downward bend as a "syncline." Where one occurs the other is usually to be found on one or both sides. Greatly folded rock is a suceession of anticlines and synolines. When the strata is only slightly folded into long indulations the folds are spoken of "open folds.", With further compression "close folds" may be formed, and if the compression has been so intense that the different ayers are bent into a series of paralle! vertical bands the folding is isolimial if each side of the folding is at the same inclination the folds are terned "symmetrical." Oftell one side

Is Pushed Over

owing to the pressure coming from one direction. The fold is then known as an "overturned fold," and if the process has been continned to its utmost limit it is called a "recumbent fold."

In regious that have been subjected to much folding, the larger folds often have smaller ones superimposed on them, and these in turu may have still smaller ones down to tiny "foliations." With folding there is a tendency for the particles to become separnted and even individual minerals to develop stress cracks known as "rock cleavage." Often cracks develop and these become filled with minerals of a different nature forced into them under pressure or deposited from circulating water.

All these types of folding can be seen and examined in any short section of our West Const. In a cutting just south of the Zeehan station is a splendid example of a symmetrical close folded anticline, barely four feet high, and with a base of similar measurement, a perfectly regular curve. Along the north coast from Ul-
rerstone tiv mast Table Cape call be sel a splendid series of fohls outeropping the beach. As you go along in the tro you can motice that the jagged edge the strata appears to be dipping at a ve steep angle. Further along these rod gradually assume a steeper and steep angle until they are standing vertical and finally thu over, and are to be set dipping in the opprosite direction. Th is repeated many times along this sectio of the coast. It is an indication that π are looking at a

Series of Huge Folds,

the tops of whinh have been worn of Many of these folds are several milh across. Just west of the Coo-ee sab yards a mile or so west of Buruie, the can be seen to perfection, Here an many small synclines and anticlines. Th top of one anticline is so perifect that i resembles the top of a circular concretu drain running ont to sea. We here excellent examples of both open and clow folds.

Rast of Maria Island ancient rock ha been twisted to such an extent that one horizontal bands of strata are now to be seen with a sharp bend at the botton from which the band runs vertically for over 500 feet $t 0$ a sharp bend at the tap and so on in a series of paralle pleata the same band bemg bent until it occur only few yurds from the contimation of itself in the neighturing follds. These are wonderful instances of isoclinial foldinga very tare type.

Many of the mountains of the west Coast appear to have their outline go vernsa by overturned folds. The gen tle slope u_{p} one side followed by a shest face on the other is often, although not necescarily, an indication of an over turned told. Although none of this type of folding has been recorded it is at most eertain that the twisted rocks of the west can provide many examples

In addition to a simple folding, secondary folks are often superimposel on the original ones; in fact, this is the general rule. In the moks near cooes. mentioned above, tirere are three series noticeable. First, there has been a major folding resulting in a series of great folds.

Many Miles Across,

and probably several thousand feet deep. These themselves consist of a succession
of small folds ten to twenty feet across. Again another folding has taken place in a direction normal to the others; that is, while the first have the succession of anticlines and synclines in a vertical succession the series shows waves in the strata in a borizontal direction, that Is, along the surface of the ground.

At Cradle Mountain an even more intense folding is evident. Large folds are apparent in all the cliff faces; that at the head of Crater Lake, for example. But in addition to these, the rock has been folded in every possible direction and in many degrees until the smallest gives it the appoarance of a succession of ripple marks. These can be the result of one intense compression and may have been caused at relatively the same time; but often it is evident that they have been the result of successive earth movements. Thus, in the Mt. Lyell district the rock was first folded into a saucer-like shape; then later the edges of this were pleated by a series of minor folds. Most of the mineral bearing regions of the West Coast have been subjected to at least two series of fold ing movements separated by a very great length of time.

Another type of fold, called by Mr. E. C. Andrews the drag fold, occurs at Byoken Hill. Here there were two layers of very hard rock about four miles apart, and separated by beds of soft rock. During, compressidn these hard layers moved horizoutally and one

Dragged or Rolled

the soft rock against the other hard luyer. No instance of this has yet been reported from Tasmania.

This intense folding in probably every case occurred in the zone of flowage. These beds of rock have been let down so deep into the earth that the particlez under inconcelvable pressure and heat thereby generated have become plastic. and when the folding movements have occur ed the rocks have yielded as if they were putty. A mile or so west of the Leven at Ulverstome there is a bed of witat was criginally a conglomerate of round stones, the size of cricket balls, set in a flne matrix. This has been folded, but so great was the pressure and so phiant had the particles become that these embinded stones have stretched or been compressed in cxact conformity with the rest of the rock until now. what were at one time round water: worn pebbles, have been stretched out for, in somc cases, cightern inches, ard have been bent nound following the lines of the fold without breaking. The pressure necessary to do this cannot be itnagined.

Folding of all possible types can the seen wherever the alder rocks occur in Tasmania. Anywhere west of a line from Cradle Mountain southwards, in many places along the shore of the North Coast from Cape Grim to the Tamar, around Reaconsfield. south of Sheffeld, west of Fitzgerald, and in many places round cladstone and from Fingal to Bicheno, every variety of folding may be seen.

Section 8.

Faults and Earthquakes

As we have seen, while the strata ill the zone of flowage normally folds in respose to prossure. that in the zone of fracture normaly breaks. The formation of block mountains implies a series of such breaks on a large scale. But besides these, the surface of the earth is always laving to adjust itself in a smaller or a greater degree to varying conditions below. and there is n continual movement between blocks of the surface rock; some rising, others sinking.

Now, if we have an extensive bed of strata under half of which the crust is gradually sinking or rising, while the other half is stationary. a stage is reached when something must give way. If the movement is very slow and the rock soft.
or ander considerable messare, it will tend to drag and gradually to bend at the janction between the moving and the stable portion until a more or less uniform curved slope connects the two. This resembles one side of an ordinary fold. and is called a "monoclinal fold' But a monoclinal fold approximates rather to : fault than to a fold. The best example of such a feature is to be found in the Blue Mountains east of Sydney, where the level sandstones bend from the top of the mountains to the plains $2000-3000$ feet below without breaking.

If, instead of n gradual movement the sinking or elevation is rapid the tendency will be for the bed of rock to

Break at the Junction.

This will allow the moving portion to respond to the inflatices from belos freely, and the result will be that in one place strata will be found at a different level from strate elsewhere that was ohviously laid down at the same time; but, besides this difference of level, showing no signs of compression or other earth movements. This break is called a "frult."

A simple break is termed a nomal fault, and its existence is indicated by this fact that any given layer of rock when followed along to the fault suddenly stops there, the other side of the fault being rock of a different layer, or even of quite a different series. A break caused as described above is seldom a simple fracture. More usually there is an area of broken rock with many small fanlts. Sometimes the rock is so broken that its structure has been destroyed, and in extreme cases it may be reduced to rubble. This is known as "faut breccia."

In very hard rock the fault may be a fine, straight crack, and the sides may be polished by the force of the slipping rock. This polishing is known as "slickenside," Sometimes it can be seen that there has been contimual movement up and down along a fault line. Sometimes the edges of the strata adjacent to a fault are dragged round towards the other block.

These are the features exhibited when a bed of rock is broken by portion sink ing or rising in relation to the rest. Bometimes faults may be occasioned ly haterai pressure in the same way as folding. In this case, when the pressure has come on the

Side of a Bed of Rock

instead of folding it has broken. Oftem it will bend in the middle and then break. This form is common amongst our sandstones throughout Southern Tasmania. At other times when the rock breaks one portion is forced over the ather. This is termed an "overthrust fault," Often the edges are dragged round into a monoclinal fold. Faulte may have a displacement or as it is called a "throw," of any number of feet, from great tectonte fanlts. showing a movement of several thousand feet down to ones of hardly percoptible throw. Many of these smaller faults are mere local adjustments, penetrating only a few layers of rock and may be called "creep faults."

As we have shown, the western portion of Tasmania gives us every possible example of folding. The eastern portion on the contrary shows little folding, but is broken in every direction by faulta of
all descriptions and sizes. It is probe Is imposible to follow a bed of rook southern, central, northern or castern T mania for a mile in any direction wi out meeting is fanlt of some deseription

We have first the major block fand The country is booken into regmenta, all different altitudes from sea level; 5000 feet. The edges of thene varie blocks are all huge faults-whatever t cause. For example, rock of the zur origimal bed occurs. At sea level et I bart, and on the slopes of Mt. Wellim ton, not four miles away, it is to be mo at an

Elevation of 3300 Feet.

Similarly the faces of the Weatern Tien Ben Lomond, the Fast Coast mountain AIt. Field, the monntains south of 6 Huen and all the lesser hille in sout exstern Thasmania, show displacemente : the beds of roek to anl equal extent.
Then these beds, each at its own heigh have been broken by many faults of lem size. Probably the Derwent is workin down one of these, as evidenced by th eliffs at the rocks near New Norfolk, Bedlam Walls, near Risdon, and at th Bluff, at Bellerive. The Tamar is ale probably following a fault line, up the side of which the main line climbey be tween Launceston and Evandale Jum tion.

Our whole coast is probably determina by three large faults, but certainly man of the details are fixed by mall ones Bass Strait is probably a block of lam dropped below the general level by series of faults maning along the Thmanian and Victorian coasta. Thew coastal faults have not been a clean breat but a series of minor criss-croes faults, in tersecting each other and ranning at a angle to the general line of break.

In addition to all these, our rocks are broken by innumerable smatler faulth Especially is this true of our coal field -coal measures being particularly fragik rock and notoriously broken. Thew gmall fanlts have been the greatest his drance to cod mining in Tremania, and at least one good colliery-Sandily-wat forced to close solely on account of

The Innumerable Faults.

When a seam is being mined and a inull is met with the con-bearing layer on the other side of the fanlt is lost and much miproftable work is necessary to pick it up again. If this ocems too often : stage is reached when the quantity of coal won will not pay for the work of cutting out barren rock to get at it.
In Tasmania the common sandatone originally rested 500 feet above the common
blue and brown limestone. Vary fre quently these rocks may now be seen plongside each other. This oceurs on the Huon-road, in Lenah Valley, in Glen. prehy Valley, and on the New Norfolk. road east of Sorell Creek. This always Indicates the existence of a fault. All our mining fields are bounded, limited and Fraversed by faults, and every one of the bulletins of the geolegical survey deFribe many. Faults are by no means conAned to the block mountain regions of the east. The folderl rocks of the west have their share.

EARTHQUAKES.

These catastrophies are merely the apparent results of tiovements in the earth's ruat. When a fault occurs, or when, luring folding, beds of strata break, the djacent surface suffers an earthquake. The causes are the causes that produce plding and faulting, and have been suffifiently discussed. Earthquakes are comhon today whercver monntain building going on; for example, all round the mater edge of the land bordering the Paci-
fic. They also occur through minor adjustments of stresses after the building processes are complete.

If the strata are very resistant the strain will be resisted until it becomes too great. when the rock will give way with considerable displacement and

A Great Earthquake

like the recent one at Tokio will result. if the rock is not resistant it will give gradually, a little at a time, as atrain eames on' it and minor earth tremors only will be the result. In Tasmania mountain building movements are fortuately completed for the time being, and we are not subjected to earthquakes on a large scale; but Bass Straits is decidedly an earthguake zone, and small tremors are recorled from there nearly every year. These are probably caused by slight slippings along a fanlt linc, a fest inches at a time, and due to adjustments of stresses after is period in the recent past of conwiflerable earth movements. No place on the earth's surface ean be said to be defnitely immune from the possibility of earthquakes.

Section 9.

Volcanos, Geysers and Hot Springs

It has already been explaned that these tivitiea are merely incidental phenonena mountain building processes, due to the reing of molten materiai close to the surce. A volcano is merely a vent from a Igma reservoir to the surface and a Fser, or hot spring, is merely a vent from supply of water accompanying molten che or reaching it from the surface. Many volcanos have commenced actiiy within historie times, and under entific observation. The first sign is mally a fissure traversing comparatively fel country, from which moiten rock has peared to flow (really it has been neezed). This molten rock, or lava, molidating round the vent soon builds a considerable mountain through which ge subsequent eruptions burst.
These fissures can all be traced to the es of great earth movements, and corpond with folding or block faulting of underlying segments of the crust. In the most intensely active volcanic rems of the world the volcanic cones vents are all arranged in lines corresding to these fissures, with the largest canos where two fissures croses.

Flssure Eruptions.
The grandest of all volcanic eruptions fe been those in which the entire length
and breadth of the fissure have been the passage way for the upwelling hava. These have movidet the great hay flows of anticuity which we can still wace today. Their origin js due to the qualities of molt. en material accumulated below the surface, and the pressure generated by earth stresses sufficiently powerful to eject such a mass of material. Along the whole of our north coast are hige flows, many of over 100 square miles in area, of unbroken lava. In Victoría weli over 20,000 square miles is covered in this way. These great flows are the result of a series of fissure eruptions, and are signs of earth movements of a major degree. Thronghout Tasmania many smaller areas are covered with ancient lava flowa, and yet there are very few places in which it can be definitely said that a volemone existed. Basalt -a rock that was once lava-stretehes from Pontville to lyiflgewater, and is found at the back of Kingston, aud around Sorell and lichmond, and in many other places without the slightest trace of the previous existence of a volcano. These ocenrences are probably the resule of fissure eruptions on n small scale.

Lava Flows.

These may be distinguished petrologically by the nature of the rock as will be
explained in a later chapter. They can also be distinguished in the field by typical characteristics. When a mass of erystaline rock can be seen filling up a valley, and overlying older rocks it is safe to assume that it must have flowed there as lava. Very often by tracing such a rock the course of ancient river valleys down which the laya flowed can be discovered. As this rock is invariably very hard it sometimes happens that, if the original valley sides were composed of noft rock, these have later been weathered away, and the lava flow which originally occupied the lowest portion of the valley is left as a ridge.
Usually the mechanical effect of flowing molten material has left its mark on the subsequent solid rock; that is, you can see at a glance by its existing arrangement that it once flowed to its present position. Often it picks up blocks of other rock as it travels, and these can now be found embedded in a rock now much harder, and often pieces of lava which have solidified sooner than the mass, have been broken off, and can be found also embedded in the later cooled masses of the same rock. Air bubbles are frequent in lavas, and show in the solidfied rock as holes or vesiclen. These may at times show the direction of flow, and sometimes they may tend to become elongated in the direction the lava originally moved.
As the flow cools cracks are fomed. generally normal to the cooling surface. These indicate the position of the original surface long after this has been removed. As the top or bottom of the fow is usual. ly the cooling surface these cracks tend to deyelop vertically, and to divide the rock into columns. These columme are often very perfect, and are a very common feature of solidified lava flows. They are to be seen par excellence at the Burnie breakwater, and in the quarry behind it. where also the fall of the lava over the former sea bank can be traced in the now solid rock. Columus are also well dereloped in the Jordan Valley, just north of Bridgewater, at New Norfolk, just west of the Derwent Bridge, and in many other places. If the lava fell into water a characteristic form is seen known as "pillow lava." the columns being divided by horizontal joints, making a form resembling a pile of square pillars, piled one on top of the other.

Volcanie Cones.

Seldom does a volcano emit lava alone from its erater. Much water accompan ies the magma af an original constituent. and. much more is collected from surface soakage. What pressure is released by the molten lava reaching the surface. this water converts into steam, and when
the pressure generated by this steam is greater than the containing prensure of the lignid lava, an explosion results. During an eruption these explosions are more or less constantly ocenring in proportion to the quantities of water present, and the viscocity of the lava. This has two results, firstly, molten rock, instead of flowing out of the ctater as lava is hurled in blocks lighl into the air, and secondly. the lava iteeli is broken by smaller ex plosions to an ash or a froth, shich in turn is ejected by larger explosions, and spread round the country side. Most of these blocks of disintegrated lava, and the ashes so ejected fall close to the crater mouth, and thus in time build up a mountain, or volcanic cone, at the top of which is to be found the erater. Most lava flows are interstratified with layers of ash and scoria (the "lavafroth"). These are very common in Tammania around the remmants of ancient volcanos. and can be found in nuny places along both sides of the Derwent and through the Midlands and along the North Coast. Cornelian Bay Cemetery and the recreation ground at hindisfame-to give but two examples-consist of beds of volcanic ash and scoria. A cloud often descends the slope of the voleano during an ertiption. This was onre thought to be steam, but during the emption of Mount Pelee such a cloud exterminated a whole town. Such phenomena were then more carefnlly studied, and were found to be microscopic frakments of white-hot lava slattered by explosion, and instantly fatal to any form of life.

Plugs and Neoks.

These volcanic cones are usually composed of loose ash and boulders of broken lava, and unless protected by subsequent lava fows do not long withstand thr attack of the weather. Thus, although all the typical voletues of today have this form there are few deflite cones preserved from the much greater cruptions of antiquity. put often lava wells up through the crater and eventually consolidates there. When the soft fiel of the cone is washed away this solid core remains, often as a hill of considerable height. At Mt. Pelee such a plug was pushed many thousands of feet into the air by the great eruption.

Lava Mountains.

Although lava usually fows like a molten river, down the nearest valley of sprends in. a sheet over a plain, sometimes owing to the viscosity through being nearly solid when erupted or through containing minerals that solidity very quickly (these and their effent will be

Becussed later under Petrology), the lava bes not flow or spread, but piles up into dages and hilla near the crater. Many y our so-called basaitic hills, as those at broughty Point, Bream Creek and round tork. Plains appear to have been due to his. Sometimes solid lava covers, and 0 protects, a volcanic cone, at other mes it may partly cover a bed of loose sh, the portions so covered being proected and standing out as ridges and fils when the unprotected portions are pmoved.

MInerals from Volcanos.

Volcanoes seldom possess the requisites lecessary for the formation of minerals commercial proportions, but somemes large quantities of sulphur are zapped in a crater or asin bed. Sulphur is btained from these sources in New Zeand. Various forms of lime are occafinally so deposited and are very useit when found. The great diamond mines 1 South Africa are all located in deep polcanic pipes, an! the intense heat apears to have been largcly responsible or the formation of the gems.

Hot Springs.

When water in quantities accompanies volcanic eruption, it may reach the surhee in a heated condition, and the existance of volcanic activity below the surice may raise the temperature of ordiary underground water so that the norhal spring water is hot.
The especial significance of these thergal activities is due to the fact that eated water, often under pressure and ar above boiling point, is able to displve minerals from the rocks through hich it travels much more readily thall old water, and that when it drops in emperature, on reaching the surtace *denosits these minernls. We thus get ery pure beds of the various minerals so eposited, and the wonderful effects haracteristic of a hot spring are mo prmed. The pink and white terraces of

Lake Rotomahana, in New Zealand, were splendid examples of what a hot spring can build by depositing different layers of minerals in this way.

At Geilston Bay, in places behind Sandy Ray, and in Upper Burnett street, Wesi Hobart, there are traces of existence of ancient hot springs in the vicinity of Hobart. In these places there are deposits of a very pure limestone (t:avertin), which sloows unmistakable signs of deposition from a hot spring. In the deposit at Geilston Bay leaves of trees growing near have been preserved in the lime water flowing from the spring.

Hot springs are usually the last phase ot volcanie activity, and are found when the actual craters have become extinct, but the deeper regions of the earth are stil: sufliciently hot to warm up water percolating down to them. In periods of ful' volcanic activity the water mingles with the lava and causes steam pockets, explosions and ash rather than coming to the surface merely as a hot spring. The sc--called hot spring near the Kimberley railway station, between Deloraine and Latrobe, has not had its waters heatei (75 deg. F. is its usual temperature) by thermal action, but by the chemical action of deccomposing limestone below.

Geysers.

These spectacular phenomena are merely perversions of the normal type ot hot spring. When, through a restriction in the channel, or from another cause, the column of water forming a hot spring ani become heated at unequal temperatures throughout its length there is a pessibility of lower parts of this column of water being converted into steam which then ejects the water columin above it This column of water is known as a geyser. Hot springs may become geysers, and active geysers in time praally remove the obstruction which cuses their existence as such and become hot springs again.

A. N. Lewis.

"Some Tasmanian Reptiles"

Snakes are undoubtedly the representatives of this division of our fauna to which most attention is paid by the casual observer, yet, strange to say, very little regard is given to their classification, and Tasmania is eredited often with numerous species which it does not possess.
There are but two classes of snakes in Thomania, the ordinary venomous land snakes, and the rare (as fa: as our island is concerned) sea smakes. The number of species is very limited, as the land snakes have but three representatives, whilst but two species of sea snakes occasionalIy wander as far South as the Tasmanian const.
There are no Larmiess snakes in Tasmania, nor have we any tree snakes, pythons or death adders. The three terrestial Tesmanian snakes

Are All Poisonous.

but these constitute the sole danger in the bush. The various species of lizards which are referred to so often as "death adders," "blood suckers," or other such designations, are, in reality, quite harmless. The most evenly distributed, as well as the most dangerons Tasmanian reptile, is the tiger snake (Notechis scutatus). Care must always be taken when dealing with the tiger snake, especially in the early summer, which is the breeding season. This species, as with others, shows very congiderable variation as regards coloration, and the various vernacular designations which have been given to the color varipties has tended to confuse matters. For instance, bush dwellers usually refer to the dark eolored snakes as black smakes. and the lighter forms as carpet suakes. Both terms are incorrect, as neither the true black snake, which has paired caudids, nor the true carpet snake, occur in Tasmania. The typical tiger snake has the body scales in 15 to 18 rows, ventral plates 150 or more, and the sub caudals which are entire, 40 to 60 . The central scale on the hend

Is Sheld Shaped.

almost as broad as long. This fenture alone immediately distinguishe: it from the other apecies. In the typically marixed specimens the body color is golden brown, crossed by almost 50 bands of dark brown. The average length is $\overline{5}$ geet, and there in one specimen in the Tasmanian

Museum which measures no leas than 6 feet $\mathrm{f} \frac{1}{2}$ inches.

The only other Tas anian suake which it all aproaches the tiger same in size is the superb snake (Denisonia superba) This species is also known as the coppe: headed suake, the large scaled snake, and the diamond anake. The last designation is totally incorrect, as the true diamond snake is a python and a variety of the carpet snake which doe; not occur ilt Tasmania. In the superb snake the central shield in the head is approximstely twice as long as broad. The color varies from black to reddish brown, whilst the average length is from three to five feet.

As regards the color of the Tasmanian snakes in general, it in partimiarly ns cessary to remember that this shown great variation. For instance although

A Typleal Tiger Snake

is golden brown on the body, crossed by bands of dark brown, yet they are oechsionally met with almost black, or even in bandy country almost white, and the superb snake, although lacking the banded coloration, has similar changen se regards the general color.

The third land snake is the small whitelipped whip snake, which can be immediately identified owing to the white tark. lugs on ita lips, and the dentral sate of the head. which is thee timere mo long as broat. The whip snake is plentifulIy distribnted over Tasmanin, and is found not only near the sea shore, but also particularly pleatiful on the mountaili summits.

The two sea smakes which occasionally reach Tasmanian waters are the wandering sea snake, a species which grown to abont 3 ft. in length, having a body coloring of olive and a number of eneireling black rings; and the

Spotted-talled Sea Sanke,

in which the seales are laid edge to edge and whieh is black above and yellow below the tail being yellow, spotted with black.

A Stray Turtle.

There is another representative which is grouped in the reptilian class, although of quite distinct order, namely, the lenthery turtle, which is occasionally met with in Tasmanian waters; but it is oniy on very rare necasions that it is found so far south, and as the whole turtle
group is but a relic of a bygone fauna, such visitors tend to be less and less in the progress of the years.

Lizards and the Harmless Dragon.

Returning to the land fauna, there are some interesting examples amongst the numerous lizards which oceur in the island. For instance, the several momirtain dragons which are commonly met with under rocks, etc., especially on the hillsides. These interesting little animals, which are repulsive-looking in some ways,

Are Quite Harmless,

although generally credited with being dangerous "blood-suckers," and numbers are often killed by those who do not understand the true place of these lizards
in the scheme of Nature. There are also the several rock lizards occasionally referred to as "death adders," and credited with being possessed of many poisonous qualities, which they do not have.
'I'wo species of the large blue-tongued lizard are met with in Tasmania, and they are often referred to as "goannas" or "iguanas," but such designations are misleading, as iguanas are much larger reptiles, of a different character, and which occur on the mainland.
In addition to the foregoing there are a large number of species of the small lizards, which occur in such numbers, not only in the bush, but in suburban fardens. Most of these lack vernacular designations, although they have naturally been duly classified with regard to their scientific titles.

Clive Lord.

Section 10.

The Attack of the Weather

In the previous sections we have seen how masses of the earth's crust may be raised above the general level, and so form land and how these masses may be added to. But immediately a sect:on of land appears above the level of the ocean and even before it is attacked by various processes which modify the effect of the building influences, impose the details of topography on the landscape and generally tend to level the surface of the country. Indeed, they are at work long before the building processes are complete. The more pronounced the bullding movements and the greater the elevation given to the landscape by them the greater the powr of the levelling agents; so wherever theme agents have been at work for lang the bolder fatures imparied by the building movements have to be levelled to rolling plains. This general levelling of the surface of the landscape is apoken of as erosion.

Agents of Erosion.

The agents by which eroston may wear away the rocks of the surface of the earth may be grouped under three maln heads:-
(a) The weather.
(b) Water.
(c) Life.

The effect of the various agents in these groups to some extent overlap. For example, it is difflcult to fix a point where rain ceases to have the erosive effects peculiar to the weather, and to
attain these grouped under the heading "running water." Again, the weather may so effect rumning water as to turn it into a flow of ice which presents very different characteristics. Also life depends directly on climate, and the absence or otherwise of the crosive form; due to life may be considered a sub-division of the heading "weather."

The Weather.

Under this heading we group the effect that (1) The atmosphere; (2) changes of temperature; (3) frost; and (4) wind have on the landscape.

The weather effects all portions of the earth's surface. While a river may present more visible evidence of the work it is doing in wearing down the countr: side, its work is confined largely to its channel; but the weather is at work always. Night and day it is slowly, but certainly, disrupting the rocks of the carth's crust. Naturally this effect is more powerful on the summits of high mountains, or on exposed rock faces, but it penetrates everywhere, and no depth of soil or covering of vegetation is a com plete protection. Also the weather very materially assists the other agencles.

Air.
The air has very little erosive effect of itself. If the atmosphere contained throughout the year relatively the same degree of moisture, varied little in temperature, and was comparatively still. it would scarcely affect the rocks at all.

But no region with a climate absolutely so constituted exists. It is only as the bearer of moisture and the vehicle of change of temperature and varying air currents or winds that the air is of importance in this regard. The chemicsl effect on the rocks is considerable, but this is only possible through the agency of water, and will be discussed in the next section.

Changes of Temperature.

In most parts of the world the change of the average temperature during the year is considerable, and there is also an even greater change in between the day and the night temperature. In fact only those portions of the globe which are permanently under ice escape the effects of this change. When the temperature is high, the particles constituting the rocks or soll expand, and wheu ft drops they contract. This, although slight, is regular and the mechanical effect is very powerful. It tends to loosen the grains in the cementing material which binds them together, or to disrupt the particles themselves. It subjects the rocks to a series of tiny strains which, as the process continues, develops into cracks which present a weakness for water, frost and wind to act on.

This process is the most active agent of erosion in the desert portion of Australia, where the temperature often rises from nearly freezing to over 100 deg . F. in an hour after sunrise. And it must be remembered that it is the direct rays of the sun that beat on the rocks, and that the action is again inereased by the fact that rocks diffuse heat more quickly than the atmosphere does. In Tasmania the action of this agency is obscured by the action of frost, with us a much more powerful erosive; but on a hot summer's day the bare rocks of our mountain tops become unpleasantly hot, and the temperature there falls to the vionity of freesing point within a few hours of sunset.

FROST.

When the change of temperature extends to its maximum range the lower limit descends below freezing point. Then, as well as the mechanical effect of the expanding and contracting rock particles, another agent of erosion comes into play: Water percolating through the rock is frozen as the temperature drops below freezing point, and is thus made to expand. This tears the rock grains apart, and widens and loosens joints and cracks. The power of iee is very considerable. and ne rock can resist it. Its effect is, of course, felt very slowly, but it is very
aure. When the ice thaws again, the joints and cracks are left open for more water to accumulate, and the ice, after each succeeding freeze, has greater power, until it finally tears the particles apart.

Frost makes its effect felt all over Thstnania during some parts of the year. Its maximum wort is done in places where water freezes every night, and thaws again next day. This occurs for about nine months of the year on our higher mountain tops. It also oceurred around the edge of the ancient glaciers, and its effect. there will be discussed at greater length later.

On most of our mountains capped with diabase, water has entered the joints whinh traverse the rock vertically, and the regular effect of frost has been to tear this solid rock in hooks from the parent mass, and sphit it off in great columns. Near the edge of the top of the mountain theae appear as "organ pipes," and on the tops of the ridges as accumulations of boulders usually referred to as "Ploughed Fields." Anyone familiar with our mountain tons knows this tyne of country only too well, and its peculiar features are due almest entirely to the action of frost on a rock with regular, vertical points, in which the water can accumulate.

The summit of Mt. La Perouse is covered with sandstone, which frost has flaked into broad, flat slabs no thicker than a selool slate, and which now lie over the whole surface of the mountain. Many quartzite mountains of the West have had the rock of their tops broken into ting sharp chips like the chipped marble often spread over graves. Several mountain tops around Cradle Mountain are covered with this. Frost is the responsible agent.

Frost is active to a lesser extent in the lower country, but is alwaye at work during the winter months on every exposed rock surface.

WIND.

Wind drives particles of rock separated from the mass against other portions of still molid rock. These have a powerful erosive effect. This is very noticeable in desert conntry, where the wind-blown sand carves typical forms from protruding beds of rock. These are identifiable, as they could not have originated in any ather way. They oftey assume fantastic figures. In Tasmania we have miny erannles of this weatherine. Its greateat efferta are to be seen on cliff faces. Most of the small caves above high-twater mark round the coasts and the mumerous caves in the sandstone nod mudstone cliffs incommon in the sandstone cliffs on the
land are due to wind. These caves are slopes of Mount Wellington, on the mountains on the east of the Derwent, and throughout the Midlands. On the floor of caver formed by wind is usually found a deposit of fine particles worn from the rock from which the wave has been weathered, and the way the wind attacks the
soft layers in a cliff face is most noticeable.
The effect of wind seen thus to its greatest advantage on cliff faces is also present wherever a bare face of rock is exposed to allernating or even to regular breezes.

A. N. Lewis.

Some Tasmanian Parrots

Parrots are alwaye intereating, even to those whe take very little interest in bird hife. Their usually bright coloratwon makes them conspicuous, and as they make good case birts they are often kept as pets. Their paised feet and stout bills are characteristic of the whole parrot order. Specimens of one species or auother are to be met with in most parts of Tasmania, although with the advance of settlement certain of the more terrestrial species are becoming rare.

Amidst the tall timber of the mountains the piercing notes of the blaek or white cockatoo often may be heard, whilat amidst the smaller timber the green parrot is common. Amidst the more open timbered plaine the brigbtly colored rosellas are common, whilst the brush-tongued parrots or lorikeets often are to be seen in flocks in the fowering eucalypts.

Three species of lorikeets, or brushtongued parrots are met with in Tasmonia, the most conspicuous of these bein the rainbow lorikeet, which has its head, throat, and abdomen blue, chest red, whilst the upper plumage is green. This species is to be met with usually in flocks, particularly among

The Tall, Flowering Euoarypts.

The birds are very fast fliers, and cover large areas of country in search of food.

The conmonest lorkeet in Tasmania is the musk lorikeet. The general color oi this species is green, whilst the forehead is red and there is a distinctive red streak behind the eye, which, together with the pronounced yellowish patch on cach side of the lower breast, merve as distinctive features. This lorikeet is noted, not only for its loud fereeching amidst the eucalypt blossom, but also for ita excursions into the orehhard and gardens of the cities. The mallest brush-tongued lorikeet found in Tasmania is the little lorikeet, which in
bov. It is the smallest of the purely size is only about hall that of the minAustralian family fordae. The red colonation of the forchend and sides of the face, the absence of the red streak behind the eye, and the gencral small size oi the bird, form easy points for identifeation.

As a contrast to the foregoing small example, the black cockatoo may be nentioned, as it is the largest of the l'sittacifomes, and is well distributed over the island. The identification is easy, owing to its large size, general hack plamage, with the yellow ear corerts and the distinctive yellow band on the tail.f This species is particularly

Fond of White Grubs,

which are to be found in decaying wood, or under the bark of their trees. With the aid of its very powerful bill the black cockatoo can tear open the dead bark, or make a veritable burrow into decaying beech (the so-called "myrtle") logs.
The gang gang cockatoo has a plumage of slate grey, whilst the male has a prominent red crest. It is seldom noticer is Tesmania, but it is common on King Island. The white cockatoo of pure white plumage, but with a distinctive yellow crest, is found in many parts of the country. This cockatoo is very irtelligent; and when a flock descends in a farmer's grain paddock a sentinel is msually posted to warn if danger approashes. This sentinel is relieved at regular intervals.

The galah, or rose-breasted tockatoo, was not noticed in Tasmania until recent years, but as several small flocks have escaped from captivity they will probably increase in numbers.
There is but one record of the occurrence of the cockatoo parrot (a small brown form with a prominent crest), and this bird was probably an escapee.

One of the

Best Known Specimens

in Tasmania is the green parrot, or green rosella, which is also known as the mountain parrot. The general wolor of this species is green, the forehead red, cheeks blue, with the under parts yellowish. This species is confined to Tasmana, where it is fairly common, particularly amidst the sualler eucalypts which fringe the larger forests. It is also met with high up on the mountain, for which reason it has obtained one of its common vemacular names.

Another well-known species is the whitecheeked rosella, the distinctive plumage of which serves to immediate'y identify the lima which is to be met with througeut Tasmania wherever conditions ne suitable. On King Island there is ant additional form, the Crimson rosella.

Two very interesting green parrots or parakeets occur in the island, the bluewinged, which is widely distributed, and the orange-breasted both of which occur here. The former species can be recognised by the blue band on forehead, blue wing, and the entire greeniah yellow color of the minder surface; whilst the orangebreasted species has under surface of an orange yellow with distinctive orange markings. the mpper plumage is green, whilst there are blue markiugs on tho wing and forehead. The frontal bund of this species is usually much paler than in the
blue-winged form, and serves an and distinguishing mark apart from other con siderations. As with all forms whieh fre quent the gromid these speciea are fed ing the extension of settlement and an much rarer than formerly.

One form of the parrot tribe, concers ing which there lins been much dinew sion with regard to its exact elaneifict tion in the family group, is the Swift par wot. This species is olten found in com pany with the lorikeets, which it rememble greatly in some general respects. Bwit parrots can be distinguished by the

Swiftness of Their Flight,

the red forehead and throat and the blw on the crown of the head. In certain years this species is to be found in greal numbers in some districts, but they are a semi-migratory form and appear to travd latge distances.

The final remesentative of the parrot or der in Tasmania is the interesting ground parot which is a purely tercestial ape cies now becoming rare on account of it numerous enemies. more particularly ir troduced cats which take such heary toll of our bird life in general. The gcound parrot can be easily recoguised by its distinctive plumage which in green barred black and gold. This interentind fom has always been of interent to batut ralists. It was first described in 170. The Frencll expedition which vinited Tar main in 1703 folly flesulbed this interst. ing form and pmblished ilhastrationa of it.

Clive Leva.

"Some Notes on Whales"

The ordinary naturalist has not many opportunities to study these gigantic cetaceans. Possibly, during the course of his sea voyages, he may have seen them at a distance, A few skeletons have been noticed in maseums, and if by chance one has been observed stranded on the shore, especially if it has been there some time, the average person is only too anxious to get as far away as possible. Whales are. therefore, rather difficult to study. They cannot, as a class, be handled and examined such as butterflies, or even birds.

Nevertheless, whales are of great ithterest, and many facts have yet to be gleaned concerning not only their habits, but more especinlly the part which they play in the eyolutionary trend of animal life in general. One question which is of interest to naturalists has been the elucidating of the problem conceming
the animals from which whales evolved. It must be remembered that a whale is a true mammal, and not a fish as it it sometimes termed. Many consider that whales originated from one of

The Most Primitive Familles of the Carnivora, bat their aquatic habit throughont untold generations heve entirely changed these animals so much in character that a tast amount of pains taking research has been necesary in or der to gain the knowledge which is por sessed by the world today, and a very great deal yet needs to be done in this is in other branches of science.

Whales have become essentially adapted ror an aquatic existence. The tail has hecome the min means of locomotion, whilst the himi limbs have practientls disappeared, athough vestiges are found in certain species, whilst the fore-limbe have been reduced to mere paddles.

Life in the water and the resultant constant pressure on the head, together yith the fact that tae head is held practically motionless while swimming, has had a modifying effect upon the skull and the neck bones of the whale. As with all mammals with one or two minot exceptions the neck bones, or cervicle vertebrae, are seven in number, and they become compressed to auch an extent that they are proportionately shorter than in any other animal, and in some species the majority are fused together.
To describe the changes which have taken place in the Cetacean skull would entail the use of more time and more technical langwage than is possible in the present instance; but, nevertheless, the subject of the various changes is a study of great interest.
To turn to more general matters the fact may be recalled that whales generally

Are Remarkably Unlform.

im shape, although they vary in size; in fact, the first essential of a whale is like the snake, to be large whenever the matter is discussed withont undue attention to scientific nccuracy. The giant of the ocean-the Blue Whate-may reach 100 feet in length.

As fegards the ciassification of whales they paturally fall into two sub-ordersthe whale-bone whales (Mystacoceti) and the toothed whales (Odonticeti) the latter including the dolphin family.

The whalebone whales (Mystacoceti) are uaturally the more valuable group commercially. Owing to the cosmopolitan nature of the Cetacean order as a whole it is a matter of difficulty to say with any degree of certainty exactly which apecies occur in Tasmanian waters.

The origin of whalebone obtained from whales is often misunderstood. This is not "bone" in the true sense of the word, but is evolved from the hard palate. Owing to this wonderfil structure the teeth have atrophied, and in certain whales have become rudimentary, and only appear in early life. As these early teeth degenerate they are replaced by long triangular plates of whalebone, set at an angle, and frayed on the inner side of the jaw. This arrangement allows the whale to progress through the water and sieve out the small animalculae, commonly called the whate foom of "Brit," upon which these huge creatures feed. The animal elevates the tongue, and thus drains off the liquid throngh the plates of whalebone, the fringes cat out of the inner edges retaining the essentinl portions of the whale's diet, after which the mouth is elnsed, and the food swallowed.

The toothed whale (Odontoceti) are by far the larger group, and the division contains forms ranging from the

Huge Sperm Whale

to the small dolphins. An interesting faet is that the skull of the toothed whales is always more or less nsymetrical.

The beaked whales (Ziphidae) form an interesting group of the toothed whales. Such forms as Hyperodon Mesoplodon and Tiphins oceur in Tasmanian waters, but they are seldom obtained, and there is not a great deal known about them.

The family Delphinidae, includes the fierce "killers" and the smaller dolphins. The latter are usmally called 'porpoises' by Tasmanian fishermen, but they are, Etrictly speaking, dolphins- The dolphins can be distinguished by the deep grooves on the palatal surface of the maxillaries, and by the larger number of teeth.

Clive Lord.

Section 11.

Erosion by Running. Water

In the last section we showed how the Weather is continually at work breaking down the rocks of the suiface of the world. A far more important agent in the process of levelling the landscape 0 running water. The action of the weather merges into that of runnig water, for which rain falls in any quantity the eurtace soil cannot absorb it all, and some runs a greater or less distance over the surface, and even portion of the water that soaks into the soll or rocke emerges at a lower level to run in atreams over the surface. While the weather is at all times engaged in wearing
away ex posed surfaces, water only affects certain restricted channels; but the result is far stronger and possesses much greater power than the slow effect of the weather. So much so that frequently the result of a single shower is apparent. The effect of the weather may be

Compared to Decay.

whilst that of running water resembles wear, and is often referred to as "abrasion." The weather affects the whole surface similarly if with differing intensity; but running water affects the landscape in an almost infnite varieties of
ways, and so must be dealt with at greater length, although here only the broad principles can be referred to. It is diffeult to give particuiar examples here because they exist everywhere. In a day's walk along any river, creek, of natural ralnwater channel, all the features here described may be seen.

Mechanism of Stream Erosion.

As soon as water commences to flow over the surface of the earth. either after a fall of rain or from a spring, it starts to wear away portion of the surface. Its work is seen as the excavation of its channel. In the earlier stages such runnels form only after a shower. The weight of the water removes particles of loose son! and carries them with it down the slope, until its power is thecked by the exwaustion of the supply or by the disappescance of slope sufficient to enable it to olitain momentum. The many trickles towards the top of a slope will one by one unite, and thus gain greater volume and hence power un. til finally a permanent stream grows trom inaumerable small runnels. The stream carries out its own function in the erozion process, as will be explained, but it is only the result of many streamlets, and is only working in the lower portion of a larger valley. The tiny tributarles erode the sides and the head of the main valley, and do the real work of removing the bulk of the landscape. The amount they can perform depends on (1) the volume of water; (2) the slope: and (3) the hardness of the rocks.

The Volume of Water.

It is obvious that if the nrst morive power possessed by the streamiet is its own weight, then as the weight of water running over the surface increases so will its erosive effect inerease, and the streamlet with the most water will wear out the larger channel. But mere volmut of water, except in the first instanee, has very little effect of itself. It must be realised that pure water nas little power to wear away rock; its power is given by the particles it carries with it, in much the same way that the puner portion of a piece of sandpaper has Hitle use in smoothing a piece of wood, but merely carries the grains of emery which tear away the flores of the wood. In both cases the naper and the water oniy carry the sand graing which do is real work.

But, taking the simple case of a rainwater channel formed in soil after a shower, the greater the volume of water the greater the weight of soll which it oan move down the slope. This gives
the stream its firet start, and untll © soil and broken suriace rock are re moved volume alone is all that fierequire to wear out a channel. And it is this tiny streamlet tormed aftor a pasiny shower that is the most active and per. sistent of all the factors that are eat gaged in levelling the landecape. Tw work of one is slight, but there are ed many, and they are so readlly formed, and are at work so universally that they are continually washing the loowe mat* rial separated by the action of the wenther from the surlace of the hill down to the falleys from which places the streant remove it.

In this early stage the volume of water usually depends on the amount of ram falling in a given time. The heavier the shower, the less of it the soll can sh sorb, and the more it has to rum down the hill side. Also the more freguent the showers the more frequently will water run in the courses of the stream: lets.

The Slope.

Water, of course, can only move when there is a certain slope, and it requiret no mental effort to realise that the steep er the slope the greater the sperer with which the water will run, and hence its greater erosive ful transpertine power. If the rate of flow of a otream is donbled, the treight of material it can carry incyenses to 04 times. So while rain falling on level ground either sinks into the soil or lies as stationary pools, and has little mechanical effect on the landscafe, min which falla on hillside in any quantities scours chat nels in the soll, which rary in sine with the slope of the hill. In their earlieyt stages these rain water strenme merely carry of as muct soil as the volume of water, and by the velocity imported bs slope gives them capacity. But if the process is at all rezular, the ourfoce soll is soon removed from their chamnels, and they commence to wear away the solid rock below.

Hardness of the Rocks.

Now the third factor comes into play. Naturally the softec the rock the easier this work will be. In the case of smmistone, for cammple, the atreamlet will in a ghort time erode a considerable channel, but if the tock ia a compact, igneous mass it will have very little effect. Where a pieec of country contaips small areas of rockn, varying in hardness, the streams will wear deep, and brond channels in the softer ones, and gradually divert the fallen rain from the areas of harder rock, which will in time be left as ridges and spurs. Thus
we see so many of the hills and spurs of our billy country capped with the hard rock diabase-these portions being more elevated simply by the removal of softer beds of rock surrounding them.

Rain Water Channels.

When the area drained by any given watercourse is large enough, n stream will be formed that is pereunial, and not dependent merely on a passing shower; but it is the small rain water runnels that largely build up the stream. The stream with its greater regularity and power develops special characteristics, but it must be borne in mind that it is only at work in its own channel at the bottom of a valley. In the course of time these valleys work further and further into the tableland, whence they rise. and are continually widening their own valleys. This headward and lateral erosion is the most powerful agent at work levelling the landscape, and this work is aecomplished, as has been explained, by the rain water channels worn by the water from each shower that cannot be absorbed where it falls.
These channels, therefore, must be put first as the most active agents of ero-
sion. Much of the erosive mechanism of streams and rivers, to be described next, can be traced in these sinall watercourses, and all the features presentcd by a great river may often be seen within a few yards along the course oi one of these rain channels.

Vegetation Control of Erosion.

We have explained that the most powerful agent at work reducing the landscape to a level rounded topography was the number of tiny runnels and stormwater streamlets formed after rain at the heads and sides of the main streams. It is appropriate here to notice a very important modification given to the natural action of these streamlets by the hand of man. Je'ft to themselves, these storm water gutters very soon erode away the side of the hill, until a slope is attained over which water can just flow.

As explained before, if the slope is greater than this, the power of the streams is increased enormously, and hence they very soon reduce the slope to a gentle grade.
A. N. Lewls.
(To be Continued.)

